
Latent Idiom Recognition for a Minimalist

Functional Array Language using Equality Saturation

Jonathan Van der Cruysse

McGill University

Montreal, Quebec, Canada

jonathan.vandercruysse@mail.mcgill.ca

Christophe Dubach

McGill University & Mila

Montreal, Quebec, Canada

christophe.dubach@mcgill.ca

Abstract—Accelerating programs is typically done by recogniz-
ing code idioms matching high-performance libraries or hardware
interfaces. However, recognizing such idioms automatically is
challenging. The idiom recognition machinery is difficult to write
and requires expert knowledge. In addition, slight variations in
the input program might hide the idiom and defeat the recognizer.

This paper advocates for the use of a minimalist functional
array language supporting a small, but expressive, set of operators.
The minimalist design leads to a tiny sets of rewrite rules, which
encode the language semantics. Crucially, the same minimalist
language is also used to encode idioms. This removes the need for
hand-crafted analysis passes, or for having to learn a complex
domain-specific language to define the idioms.

Coupled with equality saturation, this approach is able to
match the core functions from the BLAS and PyTorch libraries
on a set of computational kernels. Compared to reference C
kernel implementations, the approach produces a geometric mean
speedup of 1.46× for C programs using BLAS, when generating
such programs from the high-level minimalist language.

Index Terms—equality saturation, functional programming,
array programming, pattern matching, libraries

I. INTRODUCTION

Generating high-performance code for today’s heterogeneous

specialized hardware is challenging. A promising approach is

to automatically rewrite specific idioms found in programs

as highly optimized library calls [3, 5]. This decouples the

compiler’s pattern recognition from the hardware-specific

knowledge embedded in the library implementation.

However, the library is only useful when idioms are found.

Most prior work [3, 5, 8] encodes idioms in the compiler at a

low level of abstraction. Crafting low-level idioms is tedious,

requiring expert compiler knowledge and dedicated analysis

passes. Furthermore, recognition might fail in response to minor

changes to the input program. In short, idiom recognition faces

two challenges: to specify idioms in a high-level language and

to be robust to minor changes to the input program.

To solve the first challenge, this paper proposes to express

both programs and idioms using a high-level functional array

language. Functional array programming for high-performance

computing has become increasingly popular in recent years [6,

16, 19] and the concise, high-level nature of functional

languages simplifies code pattern detection and rewriting [7].

In a functional language, the second challenge of robust pat-

tern detection amounts to finding hidden idioms. Consider the

following vector sum program: sum(v) = fold (+) 0 v.

If we have at our disposal a library function that can quickly

perform such a sum, then we rewrite the program as a call to

that function. However, if the library supports more general

primitives, the rewriting problem becomes more complicated.

Suppose the library has a function dot that performs a

dot product and a function fill that creates an array of

identical elements. A human could combine both to implement

the vector sum: sum(v) = dot(v, fill(1)). A pattern

matcher does not have human intuition and would be hard-

pressed to find this solution as neither the idiom corresponding

to dot nor that for fill appear in the original program.

This paper proposes to find such intuitive solutions using

Latent Idiom Array Rewriting (LIAR), a trustworthy technique

that finds and exploits latent idioms using equality saturation.

Equality saturation [20] discovers all possible program variants

encoded as a finite data structure by applying rewrite rules

until a fixed point is reached. LIAR relies on a minimalist

Intermediate Representation (IR) based on a few simple

functional programming primitives, resulting in a compact

set of rewrite rules. This makes it easier to capture the

essential structure of a program without getting bogged down

in language-specific details. By using equality saturation to

apply rewrite rules that capture both the library-independent

semantics of the IR and library-specific idioms, LIAR efficiently

transforms programs to expose hidden idioms and improve

program efficiency.

This paper shows how this technique can be applied on a

subset of the Basic Linear Algebra Subprograms (BLAS) [1]

and PyTorch [13] libraries. To evaluate LIAR’s effectiveness,

this work applies it to custom kernels, and to linear algebra

and numerical simulation kernels from the PolyBench suite.

The results show that LIAR leads to significant improvements

in program efficiency. Overall, this work demonstrates that

equality saturation is a powerful tool for idiom recognition,

and that LIAR can be easily adapted to different libraries by

providing appropriate idiom descriptions for those libraries.

To summarize, this paper makes the following contributions:

• Presents a minimalist IR and its tiny subset of rewrites

suitable for capturing the language semantics;

• Shows how this minimalist IR can be used to express

idioms found in BLAS and PyTorch;

• Demonstrates the effectiveness of using equality saturation

with a minimalist IR on a set of computational kernels.

979-8-3503-9509-9/24 © 2024 IEEE

Accepted for publication by IEEE. © 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

270

https://www.acm.org/publications/policies/artifact-review-and-badging-current

a / 2 + 2

+

/

a2

+

/ ≫

a2 1

(a ≫ 1) + 2

1
2 4

5
3

x / N → x ≫ log2 N

Fig. 1. Expression 1 is converted to e-graph 2 , which is subsequently saturated. In this example, only rule 3 is applied: x / N → x ≫ log2 N. From
saturated e-graph 4 , expression 5 is selected by an extractor that prefers bitwise shift.

The rest of this paper is organized as follows: Section II

introduces equality saturation while section III provides an

overview of the technique proposed. Section IV introduces the

minimalist IR and the core rewrite rules. Section V shows two

use-cases based on BLAS and PyTorch. Section VI evaluates

the approach. Finally section VII discusses related work and

section VIII concludes.

II. BACKGROUND: EQUALITY SATURATION

Equality saturation is a rule-based rewriting algorithm that

explores all variants [20] of an input program. These variants

arise from applying rewrite rules as a fixed-point iteration on

a dedicated data structure: the e-graph. Once the e-graph is

built, a performance model extracts a single expression.

e-Graphs: Equality saturation engines store program

variants in a specialized data structure called an e-graph. Each

e-graph consists of a set of e-nodes and an equivalence relation

that partitions the nodes into e-classes. e-Nodes have e-classes

as children, allowing each e-node and e-class to represent a

possibly unbounded set of expressions.

Encoding a program as an e-graph is straightforward. Each

expression node becomes an e-node and each unique e-node

is placed in its own e-class. This is illustrated in fig. 1 for

expression 1 , and its corresponding e-graph 2 . Multiple

occurrences of 2 are represented by multiple incoming edges.

Saturation: Once an expression has been converted to an

e-graph, the graph is saturated. Saturation repeatedly applies

rewrite rules to all eligible nodes in the graph. Rule application

can be performed in any order, but is more efficient when

performed in batch [24]. A batch consists of all currently

possible rewrites. Applying such a batch is referred to as a

saturation step or simply step in this paper.

In the simplest of cases, a step consists of a single rewrite

rule application. This is the case in fig. 1, where e-graph 2

is expanded by applying rule 3 : x/N → x ≫ log
2
N, where

≫ represents the right-shift operator.

Assuming the set of rules only contains this one rule, there

are no further possible applications of this rule in e-graph 4 ;

hence the e-graph is said to have reached a fixpoint. Such a

fixpoint may not always exist, in such cases standard practice

is to terminate equality saturation using a timeout [11].

Extraction: After reaching either a fixpoint or timeout,

e-graph 4 is ready for extraction. Extraction reduces an e-class

or e-node to a single expression. This single output expression

corresponds to a walk through the e-graph, starting from an

e-node or e-class. Each time the traversal encounters an e-class,

a single e-node is selected from that e-class.

To guide the walk through the e-graph, one typically looks

for the best expression in the e-class or e-node, based on

some measure of quality using a cost function. To illustrate

the use of a cost function, we could define such a function to

assign a lower cost to a bitwise shift than to integer division.

This difference in cost gives rise to an extractor that selects

expression 5 , (a ≫ 1) + 2, from the e-graph.

III. OVERVIEW

LIAR uses equality saturation to find idioms in functional

array programs. Figure 2 shows how LIAR augments the

basic equality saturation workflow with a target-independent

minimalist array IR and its associated language semantics

rules. The IR is the common representation at every step of the

system, from input expression 1 through e-graphs 2 and 4 to

final extracted expression 5 . To allow LIAR to target libraries,

it carves out two target-specific components: an extractor and

idiom rewrite rules. Those rewrite rules are combined with

the language semantics rules in 3 . Together, they allow the

equality saturation engine to expose and exploit latent idioms,

as illustrated by the appearance of library function calls in

extracted expression 5 .

A. Minimalist Array IR and Rewrite Rules

IR design is an important consideration within equality

saturation because the choice of IR determines the size of

e-graphs and the number of rewrite rules. Those rules in turn

affect the system’s feasibility, maintainability, and efficiency.

Recent work [9] has applied equality saturation to a Lift-

like [19] functional programming language rooted in the map-

reduce paradigm of array processing. This paradigm offers

expressiveness to programmers and abundant parallelizability

to compilers. Despite these attractive features, a marriage of

map-reduce and equality saturation faces two main hurdles: the

encoding of λ-calculus and the creation of a comprehensive

set of rewrite rules for map-reduce–style operators. The

aforementioned recent work addressed the first hurdle by

relying on De Bruijn indices instead of named parameters.

The second challenge was addressed by capturing operator

identities using a dazzling 156 rewrite rules, requiring over

1000 lines of Scala code!1 Such a large number of rules is

undesirable as it required an enormous effort from the system

programmer, increases chances of bugs, and makes it hard to

understand whether the rule set is complete. That large number

1See https://github.com/rise-lang/shine/blob/sges/src/main/scala/rise/eqsat/
rules.scala

271

https://github.com/rise-lang/shine/blob/sges/src/main/scala/rise/eqsat/rules.scala
https://github.com/rise-lang/shine/blob/sges/src/main/scala/rise/eqsat/rules.scala

ifold N 0 (λ λ

xs[•1] + •0)

ifold N

λ0

λ

+

•0 ·[·]

xs

•1

ifold N dot

λ0

λ

+ 1 ·[·]

•0 ·[·] *

xs

•1

build N fill

λ

dot(xs, fill(1))

1

2 4

5

3

Language
semantics (§IV)

+

target idioms (§V) Extractor (§V-C)

Fig. 2. Overview of LIAR, the proposed technique. Vector sum expression 1 is converted to e-graph 2 . Equality saturation applies a set of rules 3 to e-graph
2 . These rules consist of target-independent language semantics and target-specific idioms. Rule application yields updated e-graph 4 . From e-graph 4 , a

target-specific extractor chooses expression 5 . The only target-specific components are the target idioms and extractor, both of which are highlighted in blue.

of rules is a direct consequence of the high number of operators

and all their interactions that need to be considered.

This work retains the innovation of De Bruijn indices while

replacing the map-reduce paradigm’s operators — map, reduce,

concat, zip, . . . — with just three fundamental operators: build,

ifold and array indexing. This combination of three operators

was originally introduced by work on Destination-Passing Style

(DPS) [18] and is sufficiently powerful to model the map-

reduce paradigm’s plethora of primitives [10]. As we will see,

by paring the number of array processing primitives down to

three operators, the number of rewrite rules that represents a

robust subset of the IR’s semantics drops down to just eight!

B. Target-Specific Rules and Extractor

LIAR supplements the IR and its core rewrite rules with

two target-specific components. The first is a set of rewrite

rules that recognize library idioms. The second component is

an extractor that selects expressions from e-graphs.

A more in-depth discussion of these components is provided

in section V. That section describes an implementation of

the components for two different libraries: BLAS and Py-

Torch. Since the target-specific components rely on the target-

independent IR, we first describe the minimalist IR design and

its rewrite rules in the next section.

IV. MINIMALIST ARRAY IR AND REWRITE RULES

This section describes LIAR’s minimalist functional array

IR by first introducing the IR’s grammar and operators. The

section then proceeds by deriving rewrite rules from language

semantics and concludes with some examples.

A. Syntax and Primitives

Figure 3 shows the grammar for the proposed minimalist

IR. The IR consists of four classes of language primitives:

λ-calculus with De Bruijn indices, array operations, tuple

operations, and named function calls.

1) λ-Calculus with De Bruijn Indices: De Bruijn indices

remove the need for named parameters by identifying a

lambda’s parameter by the number of lambda definitions

between the parameter use and the lambda defining the

e ::= λ e lambda abstraction

| e e lambda application

| •i parameter use

| build N f array construction

| e[e] array indexing

| ifold N e e iteration with accumulator

| tuple e e tuple creation

| fst e | snd e tuple unpacking

| f(e) named function application

Fig. 3. The grammar describing the minimalist IR. e indicates zero or more
instances of e. N is a compile-time integer constant and f is an anonymous
function. The set of available named functions depends on the problem domain.
For example, gemm is a named function when targeting BLAS but not when
targeting PyTorch.

parameter [2]. For instance, let •i denote a De Bruijn index.

λ •0 is equivalent to λx. x and λ λ •1 means λx. λy. x.

A consequence of this standardized naming scheme is that

semantically equivalent lambdas become syntactically identical.

This syntactic equivalence is, as discussed in related work [9],

beneficial in the context of equality saturation because identical

expressions correspond to the same e-node in an e-graph. In

short, De Bruijn indices keep e-graphs small.

2) Array operations: The IR supplements λ-calculus with

three array operations: build, array indexing, and ifold.

The build operator takes an array length N and a lambda

f. For each index i ∈ {0, 1, . . . , N − 1}, build computes

f i and packages the resulting values in an array:

build N f = f 0 f 1 . . . f (N - 1)

Array indexing is conventional. Given an array a and an

index i, a[i] produces the ith element of a.

(a0 a1 . . . aN-1)[i] = ai

The ifold operator’s main use lies in array aggregation. It

takes three arguments: a compile-time length N, an initial

accumulator value init, and a folding function f that

takes both an index and an accumulator value. This function

272

(λ e) y = subst (e,y) (E-BETAREDUCE)

(build f N)[i] = f i (E-INDEXBUILD)

fst (tuple a b) = a (E-FSTTUPLE)

snd (tuple a b) = b (E-SNDTUPLE)

ifold 0 init f = init (E-FOLDINIT)

ifold (N + 1) init f = f N (ifold N init f)

(E-FOLDSTEP)

Listing 1. Reduction semantics for the minimalist IR.

is applied iteratively according to the following recursive

definition:

ifold 0 init f = init

ifold (N + 1) init f = f N (ifold N init f)

3) Tuple Operations: Arrays capture sequences of homoge-

neous data structures whereas tuples in the IR encode sequences

of heterogeneous data. The IR defines only binary tuples, since

n-ary tuples can be built by nesting binary tuples. The two main

operations related to tuples are tuple construction with tuple,

and tuple extraction with fst and snd. The semantics of

these operations are:

tuple a b = (a, b)

fst (a, b) = a

snd (a, b) = b

4) Named Function Calls: The IR operators discussed so

far support fundamental data types like functions, arrays, and

tuples. To support operations not covered by the aforementioned

operators, the IR uses named function calls.

Nullary named functions such as 0(), 1(), 2(), . . . , can

be used to model integer and floating-point constants in the

IR. For the sake of simplicity, the function call parentheses

are omitted when using constants: e.g., 0, 1, 2.

A set of binary functions implement standard scalar arith-

metic functions such as +(a, b). To make the notation more

natural and readable, infix notation is used for these operators,

e.g., a + b. The IR also supports other scalar functions such

as comparison, e.g., a > b.

Named functions can also be used to capture external library

calls in the IR. For instance, the PyTorch torch.sum(xs)

function represents the sum of a vector’s elements and is

equivalent to ifold n 0 (λ λ xs[•1] + •0), where

n is xs’s length. Section V will dive deeper into the process

of finding such equivalences in programs and how that process

is used to target various libraries.

B. Language Semantics as Rewrite Rules

We now derive the eight rewrite rules that capture the

relationships between the core IR primitives. We then discuss

how these rules are applied. We also provide examples to

illustrate how the rules can simplify expressions and derive

new ones.

(λ e) y → subst (e,y) (R-BETAREDUCE)

e → (λ e ↑) y (R-INTROLAMBDA)

(build f N)[i] → f i (R-ELIMINDEXBUILD)

f i → (build f N)[i] (R-INTROINDEXBUILD)

fst (tuple a b) → a (R-ELIMFSTTUPLE)

a → fst (tuple a b) (R-INTROFSTTUPLE)

snd (tuple a b) → b (R-ELIMSNDTUPLE)

b → snd (tuple a b) (R-INTROSNDTUPLE)

Listing 2. Eight rewrite rules that capture the relationships between build,
array access, tuple construction, and tuple deconstruction, λ-abstraction and
β-reduction.

1) Language Semantics: The rewrite rules are obtained from

the IR’s reduction semantics. Those semantics are themselves

obtained primarily by observing that the IR semantics equations

from the previous subsection can be conveniently substituted

into each other. Augmenting that substitution with an identity

for β-reduction results in the set of identities in listing 1.

The first identity corresponds to β-reduction where

subst (e,y) represents the substitution operator for De Bruijn

indices. This operator transforms an expression by replac-

ing all references to free variable •0 in e with y and by

then lowering the indices of all other free variables in the

resulting expression [2]. For instance, subst (•0,y) = y and

subst (•1,y) = •0.

2) Rewrite Rules: The identities shown above translate

readily to the set of rewrite rules in listing 2. Except for ifold,

there is one pair of rewrite for each identity. Although the

semantics of ifold could also be expressed as rewrites, the

evaluation section will show that for the examples considered,

it is not necessary to rewrite any ifold.

All rewrites should be self-explanatory, with the exception of

the second one. The ↑ operator is called the shift operator. This

operator increments the indices of all free variables in e to make

room for the additional parameter introduced by the lambda.

For instance, if e = •0 then (λ e ↑) y = (λ •1) y.

That close relationship with the language semantics guaran-

tees that the rewrite rules capture a robust subset of the IR’s

semantics. This subset will prove of interest in section V and

the experiments in section VI will further show that these eight

core rules allow an equality saturation engine to effectively

reason about and restructure array programs to expose latent

idiom occurrences. These occurrences will then be rewritten

as calls to highly optimized library functions.

3) Substitution and Shift Operators: An interesting prop-

erty of the rewrite rules is that R-BETAREDUCE and R-

INTROLAMBDA include operators that are part of the rule

application process itself: the substitution operator subst and

the shift operator ↑. These operators manipulate expressions

rather than values, making them challenging to express in an

equality saturation setting.

This challenge stems from the fact that pattern matching on

e-graphs maps the unbound expressions from the rules’ left-

hand sides to e-classes. Each such e-class captures a potentially

273

unbounded set of expressions whereas substitution and shifting

are defined for single expressions.

The literature covers two approaches to address this mis-

match. The first approach lifts the substitution and shift

operators into the e-graph and manipulates them with special

rewrite rules, but these rules necessitate additional saturation

steps and generates wasteful intermediate nodes [24]. The

second approach applies the operators to individual expressions

extracted from each e-class, which requires only one saturation

step and generates no wasteful intermediate nodes [9]. This

work makes use of the second technique.

4) Free Variables in Patterns: Another challenge arises from

rules that inflate expressions. Consider R-INTROFSTTUPLE:

a → fst (tuple a b).

Standard rule application dictates that whenever the rule

matches an e-class a, an expression fst (tuple a b) is

constructed, added to the e-graph, and unified with a. Most

of these steps are unproblematic, but constructing expression

fst (tuple a b) is non-obvious because b is an unbound

variable. Intuitively, this means the rule holds for all b.

This work implements that intuition by searching the e-

graph for all e-classes that could serve as b. In this case, that

is every e-class in the graph. Expression fst (tuple a b)

is then constructed for each suitable b, added to the e-

graph, and unified with a. This approach is applied for

every rule where an unbound variable appear on the right-

hand side: R-INTROFSTTUPLE, R-INTROSNDTUPLE, R-

INTROINDEXBUILD and R-INTROLAMBDA.

C. Examples

To illustrate how the minimalist IR and its core rewrite rules

work in practice, we consider two examples: map fusion and

constant array construction.

1) Map Fusion: A standard identity under the map-reduce

paradigm is that a pair of map calls can be fused:

map f (map g xs) = map (g ◦ f) xs.

This assertion is an axiom if map is an irreducible operator.

However, if map is expressed in terms of build, map fusion

and fission follows readily from E-INDEXBUILD and E-

BETAREDUCE as stated in listing 1:

build n (λ f (build n (λ g xs[•0]))[•0])

= build n (λ f ((λ g xs[•0]) •0))

= build n (λ f (g xs[•0])).

Left to right, the identity also follows from rewrite rules R-

ELIMINDEXBUILD and R-BETAREDUCE, meaning an equality

saturation engine equipped with those rules will find that maps

can be fused. Map fission, the right to left reading of the

identity, would require an additional rule due to the specific

λ-abstraction rule in use. We choose not to include such a rule

because it will not be of interest to the evaluation in section VI.

2) Constant Array Construction: Suppose that we would

like to optimize the following expression, which adds 42 to

each element of the array xs:

build n (λ xs[•0] + 42).

Further assume that we have a library available with very

fast implementations of functions addvec and constvec.

addvec computes the elementwise addition of two vectors and

constvec creates a vector of constants. We can express the

relationship between these functions and their corresponding

idioms using rewrite rules in the LIAR IR:

build n (λ a[•0] + b[•0])) → addvec(a, b),

build n (λ c) → constvec(c).

Unfortunately, neither of these patterns appear in the ex-

pression to optimize. However, the rewrite rules seen earlier

allow for a scalar to be transformed to an indexed array of

such scalars:

0 = (λ 0) i = build n (λ 0)[i].

This identity allows us to infer that

build n (λ xs[•0] + 42)

= build n (λ xs[•0] + (build n (λ 42))[•0]))

= addvec(xs, build n (λ 42))

= addvec(xs, constvec(42)).

To summarize, one can creatively rewrite programs to use

library functions by relying on a combination of core rewrite

rules and library-specific idiom rewrite rules. This rewriting

process can be fully automated by leaving rule application to

an equality saturation engine, which will explore potential rule

applications and arrive at the same conclusion as a human

expert who carefully uses the same rules.

Notably, the conclusion to which both humans and equality

saturation arrive is in this case that there are latent idioms in the

original expression — idioms that are not directly observable.

Once these idioms have been identified, the original application

can be readily accelerated using high-performance library calls.

V. USE CASES: BLAS AND PYTORCH

The constant array construction example from the previous

section illustrates that LIAR’s IR is suitable for robust pattern

matching and rewriting, even when input programs do not

exactly match library idioms. This section generalizes the

approach from that example and implements it more rigorously

for two libraries: BLAS and PyTorch. Those implementations

follow the blueprint from fig. 2 in section III; hence, they

consist of two components: target idioms and an extractor.

Since BLAS and PyTorch both operate on floating-point

numbers, this section separates the idiom rules into shared

scalar arithmetic rules and library-specific idiom rules. The

section then presents the extractor and its cost model, which

also facilitates sharing between the BLAS and PyTorch targets.

274

x + 0 = x (E-ADDZERO)

1 * x = x (E-MULONEL)

x * 1 = x (E-MULONER)

x * y = y * x (E-COMMUTEMUL)

Listing 3. Scalar arithmetic identities. Each identity corresponds to two rewrite
rules: a left-to-right rule and a right-to-left rule. x and y are numbers.

A. Scalar Arithmetic Rules

Listing 3 provides a small list of scalar rewrite rules. When

combined with the core rules, the scalar rules allow an equality

saturation engine to reason about tensors. That reasoning is

designed to enable idiom detection even if the idioms seem

hidden at first.

For example, consider the latent dot product in vector sum

ifold n 0 (λ λ xs[•1] + •0).

We can expose that dot product idiom by first applying E-

MULONER to xs[•1], yielding xs[•1] * 1. We then use

R-INTROLAMBDA and R-INTROINDEXBUILD on that constant

1 to obtain a final expression of

ifold n 0 (λ λ xs[•1] * (build n (λ 1))[•1] + •0)

which is equivalent to a dot product with a vector of ones:

dot(xs, build n (λ 1)).

B. Idiom Rules

The dot product idiom recognition example illustrates how

the core and scalar rewrite rules work together to expose latent

idioms. Once such idioms have been exposed, they still need

to be recognized as such. To that end, we now introduce idiom-

recognizing rewrite rules for BLAS and PyTorch.

1) BLAS: Listing 4 contains equivalences that define idioms

corresponding to five BLAS functions. These functions are:

1) dot: computes the dot product of two vectors;

2) axpy: computes αA + B, where α is a scalar and A,

B are vectors;

3) gemvX: computes αAB + βC, where α, β are scalars,

B, C are vectors, and A is a matrix;

4) gemmX,Y: computes αAB+ βC, where α, β are scalars

and A, B, C are matrices; and

5) transpose: transposes a matrix.

The idioms in listing 4 encompass both the transposed and

non-transposed variants of these BLAS functions, resulting in

a larger number of equivalences. For instance, in the case of

gemvX, I-GEMV defines gemvF, and I-TRANSPOSEINGEMV

connects gemvF to its transposed counterpart, denoted as

gemvT. The inclusion of these transposed variations allows

for a more comprehensive definition of BLAS functions.

Additionally, listing 4 also presents an idiom for the C standard

library memset function, which can be used to quickly create

an all-zeros vector. The shift operator (↑) applications in

listing 4 increment De Bruijn indices to avoid overlap with

new parameters introduced by λ-abstraction.

axpy(α, A, B)

= build N (λ α↑ * A↑[•0] + B↑[•0]) (I-AXPY)

dot(A, B)

= ifold N 0 (λ λ A↑↑[•1] * B↑↑[•1] + •0) (I-DOT)

gemvF(α, A, B, β, C)

= build N (λ α↑ * dot(A↑[•0], B↑) + β↑ * C↑[•0])
(I-GEMV)

gemmF,T(α, A, B, β, C)

= build N (λ gemvN(α↑, B↑, A↑[•0], β↑, C↑[•0]))
(I-GEMM)

transpose(A)

= build N (λ build M (λ A↑↑[•0][•1])) (I-TRANSPOSE)

gemvX(α, transpose(A), B, β, c)

= gemv¬X(α, A, B, β, c) (I-TRANSPOSEINGEMV)

gemmX,Y(α, transpose(A), B, β, C)

= gemm¬X,Y(α, A, B, β, C) (I-TRANSPOSEAINGEMM)

gemmX,Y(α, A, transpose(B), β, c)

= gemmX,¬Y(α, A, B, β, c) (I-TRANSPOSEBINGEMM)

dot(build N (λ α * A[•0]), B)

= alpha * dot(A, B) (I-HOISTMULFROMDOT)

memset(0)

= build N (λ 0) (I-MEMSETZERO)

Listing 4. BLAS idioms considered in this work. F in gemvF is short for
false and indicates that matrix A is not transposed. F,T in gemmF,T indicate
that A is not transposed and B is transposed.

dot(A, B)

= ifold N 0 (λ λ A↑↑[•1] * B↑↑[•1] + •0) (I-DOT)

sum(A)

= ifold N 0 (λ λ A↑↑[•1] + •0) (I-VECSUM)

mv(A, B)

= build N (λ dot(A↑[•1], B↑)) (I-MATVEC)

mm(A, B)

= build N (λ mv(B↑, A↑[•1])) (I-MATMAT)

transpose(A)

= build N (λ build M (λ A↑↑[•0][•1])) (I-TRANSPOSE)

transpose(transpose(A))

= A (I-TRANSPOSETWICE)

add(A, B)

= build N (λ A↑[•0] + B↑[•0]) (I-ADDVEC)

add(A, B)

= build N (λ add(A↑[•0], B↑[•0])) (I-LIFTADD)

mul(α, A)

= build N (λ α * A↑[•0]) (I-MULSCALARANDVEC)

mul(α, A)

= build N (λ mul(α, A↑[•0])) (I-LIFTMUL)

full(c)

= build N (λ c↑) (I-FULLVEC)

Listing 5. PyTorch idioms considered in this work. I-TRANSPOSETWICE

captures a property of the transpose function; all other rules recognize
idioms.

275

cost (build N f) = N · (cost (f) + 1) + 1

cost (A[i]) = cost (A) + cost (i) + 1

cost (ifold N init f) = cost (init) + N · cost (f) + 1

cost (tuple a b) = cost (a) + cost (b) + 1

cost (fst t) = cost (t) + 1

cost (snd t) = cost (t) + 1

cost (λ e) = cost (e) + 1

cost (f e) = cost (f) + cost (e) + 1

cost (•k) = 1 (∀k ∈ N)

cost (a + b) = cost (a) + cost (b) + 1

cost (a * b) = cost (a) + cost (b) + 1

cost (c) = 1 (∀c ∈ R)

Listing 6. Definition of the base cost function.

2) PyTorch: We implement a similar set of idioms for

PyTorch, described in listing 5. The PyTorch functions cor-

responding to those idioms take fewer parameters than their

BLAS counterparts, but are often polymorphic. For instance,

A in mul(alpha, A) could be a scalar, vector, matrix or

higher-order tensor. An array of multiplications [mul(a,

A1), mul(a, A2), ...] can hence be rewritten as a sin-

gle call mul(a, [A1, A2, ...]). I-LIFTMUL captures

this polymorphic property by defining a higher-dimensional

mul as a vector of lower-dimensional mul calls. I-LIFTADD

accomplishes the same for the add function.

C. Cost Model

The extraction step of equality saturation, initially designed

for a pseudo-Boolean solver, can be implemented in various

ways [20]. The most popular implementation employs a local

cost model, which quickly and simply calculates the cost of

each e-node within an e-class based on its arguments’ cost [24].

An e-class’s cost is determined by its cheapest e-node, and

the extraction process involves selecting the cheapest e-node

recursively from an e-class.

This paper opts for the cost model-based approach for

simplicity’s sake — the extractor for the BLAS and PyTorch use

cases is not the focal point of this work. The cost models for the

two use cases consist of a common base and a library function

cost model. The common base cost in listing 6 describes the

cost of the core IR operators and library-independent named

functions. Listing 7 and listing 8 capture the BLAS and PyTorch

library function cost model respectively.

VI. EVALUATION

The previous section has examined qualitatively how LIAR

can target different libraries such as BLAS and PyTorch. This

section uses quantitative experiments to measure how well

LIAR identifies idioms and speeds up programs.

To perform these experiments, we implement the IR as

a Scala Domain-Specific Language (DSL). We encode in

that DSL a subset of the PolyBench/C 4.2.1-beta benchmark

suite [15] and add custom kernels to evaluate specific tasks.

The custom and PolyBench kernels are described in table I.

cost (memset(c)) = cost (c) + .8N + 1

cost (dot(A,B)) = cost (A) + cost (B) + .8N

cost (axpy(a,A,B)) = cost (a) + · · ·+ cost (B) + .8N

cost (gemv(a,A,B,b,C)) = cost (a) + · · ·+ cost (C) + .7NM

cost (gemm(a,A,B,b,C)) = cost (a) + · · ·+ cost (C) + .6NMK

cost (transpose(A)) = cost (A) + .9NM

Listing 7. BLAS-specific additions to cost . Calls to external functions are
discounted to make them more attractive. Discounting factors are chosen
semi-arbitrarily. N , M , and K are array dimensions.

cost (full(c)) = cost (c) + .8N + 1

cost (add(A, B)) = cost (A) + cost (B) + .4N + .4M

cost (mul(A, B)) = cost (A) + cost (B) + .4N + .4M

cost (sum(A, B)) = cost (A) + cost (B) + .8N

cost (dot(A, B)) = cost (A) + cost (B) + .8N

cost (mv(A, B)) = cost (A) + cost (B) + .7NM

cost (mm(A, B)) = cost (A) + cost (B) + .6NMK

cost (transpose(A)) = cost (A) + .9NM

Listing 8. PyTorch-specific additions to cost . N and M are array dimensions.
For polymorphic arrays, N and M represent the product of the arrays’
dimensions.

Kernels are expressed by composing build-ifold imple-

mentations of the respective mathematical operators as in prior

work [18]. For instance, gemv becomes:

gemv(α, A, B, β, C)

= vadd(vscale(α, matvec(A, B)), vscale(β, C)).

vadd, vscale and matvec expand as below.

vadd(A, B) = build N (λ A↑[•0] + B↑[•0])

vscale(α, A) = build N (λ α↑ * A↑[•0])

matvec(A, B) = build N (λ dot(A↑[•0], B↑))

dot(A, B) = ifold N 0 (λ λ A↑↑[•1] * B↑↑[•1] + •0)

The exceptions to this scheme are doitgen and gemver. We

translate their C loops directly to build and ifold.

Equality Saturation engine: All kernels are transformed by

a Scala equality saturation engine inspired by the efficient egg

implementation [24]. The engine performs e-graph construction,

saturation and expression extraction. Saturation proceeds based

on one of three sets of rewrite rules, which we term targets:

1) Pure C: Core and scalar rules only;

2) BLAS idioms: Core, scalar and BLAS rules;

3) PyTorch idioms: Core, scalar and PyTorch rules.

The engine runs equality saturation for five minutes per kernel

per benchmark. After each saturation step, the cost model from

section V-C selects the optimal expression for that step.

Code Generation: For BLAS and pure C, the selected

expressions are compiled to C using an approach similar to

prior work [10] on C compilation from a functional IR. There

are no run-time Python results presented since the compiler

276

TABLE I. OVERVIEW OF KERNELS EXAMINED IN THIS WORK. POLYBENCH

KERNEL DESCRIPTIONS ADAPTED FROM BENCHMARK SUITE [15].

Kernel Suite Description

2mm PolyBench Two generalized matrix multiplications
atax PolyBench Matrix transpose and vector multiplication
doitgen PolyBench Multiresolution analysis kernel (MADNESS)
gemm PolyBench Generalized matrix product
gemver PolyBench Vector multiplication and matrix addition
gesummv PolyBench Scalar, vector and matrix multiplication
jacobi1d PolyBench 1D Jacobi stencil computation
mvt PolyBench Matrix-vector product and transpose
1mm Custom One matrix multiplication
axpy Custom Vector scaling and addition
blur1d Custom 1D stencil
gemv Custom Generalized matrix-vector product
memset Custom Zero vector creation
slim-2mm Custom Two matrix multiplications
stencil2d Custom 2D stencil
vsum Custom Vector reduction with sum

used does not currently have a Python back-end. As such,

results for PyTorch are purely qualitative.

We assess LIAR through experiments on library calls, their

evolution over time, code profiling, and run time comparison.

A. Experimental Setup

We run all experiments on a server with two 18-core Intel

Xeon Gold 6254 CPUs and 1TiB of RAM. The server uses

the following software: CentOS Linux 7, Scala 2.12.7, GCC

11.2.1, and OpenBLAS 0.3.3. Through OpenBLAS, compiled

kernels take advantage of the server’s many cores. Kernels

not compiled for OpenBLAS are single-threaded. The LIAR

implementation that generates kernels is also single-threaded.

B. Idioms Recognized

This section qualitatively assesses how well LIAR finds

BLAS and PyTorch idioms. To perform this assessment, we

report the library calls found in extracted expressions. These

data are reported for all kernels by table II and table III.

The tables show that LIAR finds idioms in each kernel. The

idioms found depend on the kernel and target. For instance,

LIAR finds that the gemv kernel is best described as a gemv

call when targeting BLAS. Indeed, the solution found is simply

gemvF(α, A, B, β, C).

When targeting PyTorch, LIAR implements the same kernel

as a combination of more granular add, mul and mv calls.

add(mv(mul(α, A), B), mul(β, C)).

The idioms in the gemv kernel are readily apparent, but this

is not the case for all benchmarks. Consider doitgen:

build N (λ build N (λ build N λ (

ifold N 0 (λ λ A[•4][•3][•1] * B[•2][•1] + •0)))).

LIAR finds a surprisingly insightful PyTorch solution:

build N (λ mm(A[•0], transpose(B))).

TABLE II. SOLUTIONS FOUND FOR KERNELS WHEN TARGETING BLAS.
Steps DESCRIBES THE NUMBER OF SATURATION STEPS. Solution DESCRIBES

THE LIBRARY CALLS FOUND AT THE LAST STEP. e-Nodes COUNTS THE

UNIQUE E-NODES IN THE E-GRAPH, ALSO AT THE LAST STEP.

Kernel Solution Steps e-Nodes

2mm 3× axpy + 1× dot
+ 1× gemv + 3× memset
+ 1× transpose

6 3.46× 104

atax 2× gemv + 2× memset 7 3.95× 104

doitgen 1× gemm + 1× memset 8 4.70× 104

gemm 1× axpy + 1× gemv
+ 1× memset

7 4.95× 104

gemver 2× axpy + 2× dot 5 1.69× 104

gesummv 2× gemv + 1× memset 7 4.27× 104

jacobi1d 1× gemv + 1× memset 5 2.53× 104

mvt 2× gemv + 2× memset 7 2.69× 104

1mm 1× gemm + 1× memset 8 4.47× 104

axpy 1× axpy 11 1.36× 104

blur1d 1× gemv + 1× memset 6 5.39× 104

gemv 1× gemv 7 3.43× 104

memset 1× memset 11 5.31× 103

slim-2mm 1× gemm + 1× gemv
+ 2× memset

7 5.18× 104

stencil2d 1× gemv + 1× memset 5 5.88× 104

vsum 1× dot 10 1.59× 104

TABLE III. SOLUTIONS FOUND FOR KERNELS WHEN TARGETING PYTORCH.
COLUMNS HAVE THE SAME MEANING AS IN TABLE II.

Kernel Solution Steps e-Nodes

2mm 1× add + 2× mul + 2× mv
+ 2× transpose

5 2.28× 104

atax 2× mv + 1× transpose 7 1.98× 104

doitgen 1× mm + 1× transpose 7 2.75× 104

gemm 1× add + 1× mm + 2× mul 6 2.68× 104

gemver 2× add + 1× dot + 1× mul
+ 1× mv

5 2.38× 104

gesummv 1× add + 2× mul + 2× mv 7 3.16× 104

jacobi1d 1× full + 1× mv 5 3.13× 104

mvt 2× mv + 1× transpose 7 1.69× 104

1mm 1× mm 7 1.99× 104

axpy 1× add + 1× mul 10 2.27× 104

blur1d 1× full + 1× mv 5 2.13× 104

gemv 1× add + 2× mul + 1× mv 7 2.63× 104

memset 1× full 11 2.03× 103

slim-2mm 1× mm + 1× mv
+ 1× transpose

6 2.03× 104

stencil2d 1× full + 1× mv 5 9.06× 104

vsum 1× sum 10 1.79× 104

The BLAS gemm function is even trickier to find in doitgen.

LIAR nonetheless uncovers the idiom by inserting constants

and by building a zero matrix using memset.

build N (λ gemmF,T(1, A[•0], B,

1, build N (λ memset(0)))

LIAR does not find an optimal result for all kernels. The

2mm kernel, for example, could be implemented as gemm calls.

LIAR does not find that solution because it would require more

saturation steps than the time budget allows for. Nonetheless,

as we will see later, there is still a large speedup obtained by

using the detected idioms and the corresponding library calls.

277

0 1 2 3 4 5 6

0

1

2

3

·104

1 × dot
1 × dot

1 × axpy, 1 × dot
2 × axpy, 1 × dot, 1 × memset

2 × axpy, 1 × dot, 1 × memset

1 × gemv

Saturation steps

e-
N

o
d

es

0

100

200

300

T
im

e
[s

]

e-Node count

Time per step

(a) Solutions over time for gemv, targeting BLAS.

0 1 2 3 4 5 6

0

1

2

3

·104

1 × dot
1 × dot

1 × add, 1 × dot, 2 × mul
1 × add, 1 × dot, 2 × mul

1 × add, 2 × mul, 1 × mv

Saturation steps

e-
N

o
d

es

0

100

200

300

T
im

e
[s

]

e-Node count

Time per step

(b) Solutions over time for gemv, targeting PyTorch.

Fig. 4. Solutions over time. The x-axes show equality saturation steps; the y-axes correspond to the number of e-nodes in the e-graph and the amount of time
spent performing a saturation step. Labeled arrows indicate a new best solution has been found.

0 1 2 3 4 5 6
0

0.5

1

Saturation steps

C
o
v
er

ag
e

axpy

dot
gemv

memset

Fig. 5. Coverage over time for the gemv kernel, targeting BLAS. The x-axis
shows saturation steps; the stacked bars depict the ratio of time spent in library
functions. Higher is better.

C. Idioms over Time

The evaluation continues by investigating how LIAR’s

solutions evolve. This evolution is made apparent by plotting

kernel solutions over time, as fig. 4 does for the gemv kernel.

Figure 4a demonstrates that LIAR progressively discovers

more suitable solutions with each saturation step. Initially, these

solutions consist of dot products. From steps three to five, LIAR

incorporates vector addition and scaling using axpy. In step

six, these function calls converge into a gemv call. A similar

evolution is observed for PyTorch, as illustrated in Figure 4b.

D. Coverage

We measure the ratio of time kernels spend in the library

function to validate LIAR’s effective work offloading. Figure 5

presents the coverage for the gemv kernel, which targets BLAS.

The initial dot-based solutions show poor coverage, with

negligible coverage at step one and only 16% at step two.

However, step three demonstrates a significant improvement,

with axpy achieving 66% coverage and an additional 12%
coverage from dot. Steps four and five favor dot, reaching

99% coverage. Finally, at step six, gemv achieves complete

100% coverage. Although memset appears in two solutions,

its coverage contribution is insignificant.

E. Run Time Performance

We now examine how LIAR’s idiom recognition affects

run-time performance. For every kernel and every saturation

3 4 5 6

1.5

2

2.5
·10−2

Saturation steps

R
u

n
ti

m
e

[s
] BLAS

Pure C

Fig. 6. gemv run times. The x-axis shows saturation steps; the y-axis shows
the run time of solutions. Lower is better.

step, we compile LIAR’s pure C and BLAS solutions to C

code. We run each solution as many times as we can over the

course of one minute and calculate the mean run time.

Figure 6 reports run times for the gemv kernel when targeting

BLAS and pure C. Numbers are reported for steps three through

six only because the high-level kernel needs to be optimized

for a few steps by equality saturation before it can be executed

in reasonable time. Once this is achieved at step three, the pure

C and BLAS solutions are equally fast. They diverge as the

BLAS solution achieves increasingly high coverage.

Figure 7 shows that recognizing idioms results in a run-time

speedup of 2.5 on gemv. Speedups vary by kernel. Notable

outliers include 1mm, vsum, blur1d, and stencil2d. The 1mm

kernel benefits from an ideal BLAS solution, netting it a

speedup of 19.72. The cost model replaces the vsum kernel

with a dot call, but the associated input array construction

outweighs the benefit. Similarly, the cost model chooses to

reduce the convolutions in blur1d and stencil2d to matrix-vector

products, performing an im2col transformation. In practice, this

transformation is slower than a direct solution. The gemver

kernel is excluded from the chart as none of its solutions

completed within the one-minute time limit. The geometric

mean speedup across all kernels except gemver is 1.46 with

idiom recognition. Pure C incurs a slowdown of 0.26 on

average. If we choose the fastest solution for each kernel,

LIAR’s generated code is 81% faster than reference.

278

2m
m

at
ax

do
itg

en

ge
m

m

ge
su

m
m

v

ja
co

bi
1d m

vt

1m
m

ax
py

bl
ur

1d
ge

m
v

m
em

se
t

sl
im

-2
m

m

st
en

ci
l2

d
vs

um

ge
om

ea
n

10−3

10−2

10−1

100
101
102
103

0.83

2.2 2.27

0.94

2.48

0.77

3.61

19.72

1.13

0.12

2.5

0.5

9.06

0.56 0.67

1.46

1.99 · 10
−2

1.04 · 10
−3

0.14
0.3

1.26

0.24

1.11

0.46

1.14

0.59

1.16

0.49

1.79 · 10
−2

1.39 1.29

0.26

1.81

S
p

ee
d

u
p

BLAS

Pure C

Best

Fig. 7. Run time speedup of LIAR’s solutions compared to reference implementations in C. For PolyBench kernels, the reference implementations are the
original benchmarks; for custom benchmarks, they are hand-written C programs coded in the style of PolyBench kernels. Each bar represents the quotient of
the reference run time and the LIAR solution run time. Higher is better.

VII. RELATED WORK

There exist a number of works that relate to LIAR. LIAR’s

IR lies at the intersection of work on the build-ifold

paradigm and advances in equality saturation.

a) Build-Ifold: The build and ifold operators were

originally introduced in work on bringing DPS to functional

languages [18]. In that work, build and ifold were chosen

for their similarity to C for loops. Despite the simplicity of

these two operators, further work showed that they can model

map-reduce’s plethora of data processing primitives [10]. To

the best of our knowledge, LIAR is the first to combine build-

ifold with equality saturation.

b) Equality Saturation: Another core dependency on

which this paper relies is equality saturation. Originally

conceived as a means to optimize Java programs [20], a

recent boom in equality saturation research has applied the

technique to various specialized problems [12, 22, 23, 25].

These problems include the linear algebra domain that forms

LIAR’s use case in this paper. Specifically, one work focuses on

sum-product optimization [23] while another optimizes tensor

graphs [25]. LIAR differs from these previous studies since it

is not domain-specific. It is a general technique for detecting

array processing idioms in a functional IR.

c) λ-Calculus and Equality Saturation: The mentioned

use cases avoided name bindings found in λ-calculus. An initial

attempt to encode λ-calculus in e-graphs was demonstrated

in a broader work on egg, an optimized equality saturation

implementation [24]. Another study, which did not involve

idiom recognition, improved on egg’s encoding by using De

Bruijn indices [9]. It was also the first to examine equality

saturation for functional array programming. LIAR adopts both

innovations and drastically reduces the number of rewrite rules

compared to that prior work by relying on build-ifold,

paving the way for a novel approach to idiom recognition.

d) Idiom Recognition: Another body of related work is

idiom recognition itself. Idiom rewriting has long served to

optimize both imperative [14] and functional languages [7].

State-of-the-art idiom rewriting research relies on flexible

patterns that capture idioms and their variations.

One approach to make patterns more flexible is to encode

them as graphs and to find candidate matches using topological

embedding [8]. Dedicated transformations can then massage

some of these candidates to match the original pattern.

Patterns can also be explicitly made flexible. A recent study

describes linear algebra patterns in LLVM IR using a language

called Idiom Description Language (IDL) [5]. The language

relies on composable patterns that abstract away variation

points such as multiplications by one. This allows IDL to

recognize but not automatically rewrite patterns including

BLAS calls. KERNELFARER, another recent work, takes a

similar approach [3]. It captures variations using flexible idioms

that are expressed as LLVM pattern matching components.

By contrast, Source Matching and Rewriting (SMR) [4]

and the MLIR PDL dialect [17] describe patterns as source

language snippets, making the patterns easier to express at the

cost of making them vulnerable to program variations.

LIAR stands out from previous approaches by recognizing

program variations, as IDL and KERNELFARER do, while

relying on simple rules in the same language as input programs,

in the style of SMR and PDL. LIAR accomplishes this feat

through its fusion of a minimalist build-ifold IR and

equality saturation. The cost of that accomplishment is speed:

the approach outlined in this paper is orders of magnitude

slower than direct pattern matching, limiting its use for larger

kernels. Future work includes addressing that limitation.

VIII. CONCLUSION

This paper has addressed idiom recognition for functional

array programs by applying equality saturation to a minimalist

IR with a small set of core rewrite rules. As seen, this

minimalist approach is robust and is able to find idioms that

are not explicitly present in the original input program.

Using the BLAS and PyTorch libraries as libraries, this paper

has shown how the idioms founds in these libraries can be

expressed easily using the minimalist IR. The evaluation also

demonstrated the robustness of this approach and that it is

possible to find idioms corresponding to these libraries on a set

of computational kernels, leading to improved performance.

279

DATA-AVAILABILITY STATEMENT

This paper’s artifact is available on Zenodo [21].

ACKNOWLEDGEMENTS

We thank Christof Schlaak for implementing the core SHIR

project that we build on. We also thank Zhitao Lin for the

SHIR C code back-end that we use to generate C code

from high-level kernels. We acknowledge the support of the

Natural Sciences and Engineering Research Council of Canada

(NSERC) Discovery Grants Program [grant RGPIN-2020-

05889], and the Canada CIFAR AI Chairs Program. This work

was also supported by a Fonds de Recherche du Québec –

Nature et Technologies 3rd cycle scholarship, award #304858.

APPENDIX

A. Abstract

This artifact contains a source tree and a Dockerfile. Docker

can assemble these components into a container that includes

the LIAR implementation and its dependencies. The container

is designed to reproduce this paper’s experimental results.

B. Artifact Check-List (Meta-Information)

• Algorithm: An equality saturation–based idiom recognition
and rewriting algorithm for a minimalist functional array IR.

• Compilation: Docker builds and loads the artifact. We used
Docker version 20.10.21.

• Data set: PolyBench/C 4.2.1-beta kernels and custom kernels,
included in the artifact.

• Hardware: A system with one or more x86-64 CPUs. We used
a server with two 18-core Intel Xeon Gold 6254 CPUs.

• Metrics: Library calls found, saturation steps, e-node counts,
kernel execution times.

• Output: Kernel optimization and execution logs, graphs and
tables generated from log data.

• Experiments: Kernel optimization with and without idiom
recognition (section VI-B, section VI-C); and optimized kernel
execution (section VI-D, section VI-E).

• How much time is needed to complete experiments (approx-
imately)?: Approximately 12–18 hours, varies depending on
CPU.

• Publicly available?: Yes
• Code licenses?: MIT license
• Archived (provide DOI)?: 10.5281/zenodo.8316752

C. Description

1) How Delivered: The artifact is available both

on Zenodo (DOI: 10.5281/zenodo.8316752) and in the

cgo24-artifact branch of the cdubach/shir Bit-

Bucket repository. Clone it as follows:

$ git clone --recursive -b cgo24-artifact \

https://bitbucket.org/cdubach/shir.git

2) Hardware Dependencies: An x86-64 CPU.

3) Software Dependencies: A Docker installation.

D. Installation

Build and run a Docker container from the artifact. In the

artifact directory, run the following commands:

$ docker build -t liar-image .

$ docker run --name liar-ubuntu -i -t liar-image bash

E. Experiment Workflow

To replicate our findings, we recommend a workflow

consisting of three steps.

1) Time-Limited Optimization: The first step is to optimize

the evaluation’s kernels using the same methodology as

described in section VI. That methodology is to optimize each

kernel for five minutes for each target (pure C, BLAS idioms

or PyTorch idioms). This experiment will take four hours and

its results vary based on single-thread CPU performance. Faster

CPUs will be able to perform more saturation steps and find

more advanced solutions.

To perform this experiment, run the following commands in

the running Docker container:
$ mkdir unlimited-steps

$ cd unlimited-steps

$../artifact/src/main/drivers/evaluate_all.py \

-t300 --optimize-only

$ cd ..

2) Step-Limited Optimization: Since time-limited optimiza-

tion delivers CPU-dependent results, we recommend a step-

limited optimization phase to more precisely replicate the

findings from table II and table III. This second step performs

the same optimization process as before, but in a way that

produces CPU-invariant results at the cost of requiring a

CPU-dependent amount of time. This trade-off results from

a saturation step limit instead of a time limit. The baked-in

step limits are chosen to correspond to the steps reported in

the tables.

To perform this second step of the evaluation, run the

following:
$ mkdir limited-steps

$ cd limited-steps

$../artifact/src/main/drivers/evaluate_all.py \

-t3600 --limit-steps --optimize-only

$ cd ..

3) Kernel Execution: The third step of the workflow involves

running the optimized kernels. We recommend starting from

the step-limited results, since these match the solutions reported

in section VI. The following commands will run each solution

for one minute, requiring a total of 4½ hours:
$ cd limited-steps

$../artifact/src/main/drivers/evaluate_all.py \

-t3600 --limit-steps --build-paper

$ cd ..

This invocation of the evaluation script will report that it is

reusing the optimized kernels from the previous step and then

run each solution for each kernel. Once each solution has been

run, the script regenerates this paper from the updated results,

allowing for easy inspection of the affected tables and figures.

F. Evaluation and Expected Result

Running the evaluation workflow described in the

previous section will fill the unlimited-steps and

limited-steps directories with subdirectories containing

the following:

1) Logs for each target, stored in the blas-logs,

pytorch-logs and none-logs directories. These

directories respectively correspond to the BLAS, PyTorch

280

https://zenodo.org/doi/10.5281/zenodo.8316751
https://zenodo.org/doi/10.5281/zenodo.8316751
https://bitbucket.org/cdubach/shir/src/cgo24-artifact/
https://bitbucket.org/cdubach/shir/src/cgo24-artifact/

and pure C targets. Each log contains detailed information

for every equality saturation step. Log files whose

names have a cov- prefix are derived from their log-

equivalents by augmenting them with the results of kernel

execution.

2) Aggregate data and plots, stored in the plots directory.

The tables and figures in this table are derived from the files

in the latter directory.

• Table II is obtained by arranging into a table the fol-

lowing columns from blas-overview.csv: name,

externs, steps, and nodes.

• Table III is similarly obtained from the data in

pytorch-overview.csv.

• Figure 4 is derived by including in a TEX

PGFPlots line chart the commands from {nodes,

comp-time}-over-time-gemv-{blas,

pytorch}.tex.

• Figure 5 is a PGFPlots bar chart constructed from the

commands in coverage-over-time-gemv-blas.

tex.

• Figure 6 is constructed by creating a PGFPlots line chart

from the coordinates in run-time-gemv-blas.tex,

cropped to solutions three through six.

• Figure 7 is a PGFPlots bar chart visualization of the

commands in speedup-bars.tex.

These tables and figures are generated afresh from locally-

computed results by invoking the evaluation script with

--build-paper. The experiment workflow makes use of this

flag and stores the resulting paper as paper/conference_

101719.pdf in the limited-steps directory.

G. Experiment Customization

Experiments can be restricted to specific kernels by passing

the names of the kernels to the evaluation script, like so:
$../artifact/src/main/drivers/evaluate_all.py \

mvt -t3600 --limit-steps

H. Notes

A known discrepancy between the evaluation as performed

in section VI and the artifact’s Docker container is that the

container relies on Ubuntu whereas section VI runs directly on

a CentOS system. We do not believe this difference significantly

affects results.

REFERENCES

[1] L Susan Blackford et al. “An Updated Set of Basic Linear Algebra
Subprograms (BLAS)”. In: ACM Trans. Math. Softw. 28.2 (June 2002),
pp. 135–151. ISSN: 0098-3500. DOI: 10.1145/567806.567807. URL:
https://doi.org/10.1145/567806.567807.

[2] Nicolaas Govert De Bruijn. “Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with applica-
tion to the Church-Rosser theorem”. In: Indagationes Mathematicae

(Proceedings). Vol. 75. 5. Elsevier. 1972, pp. 381–392.
[3] João P. L. De Carvalho et al. “KernelFaRer: Replacing Native-Code

Idioms with High-Performance Library Calls”. In: ACM Trans. Archit.

Code Optim. 18.3 (June 2021). ISSN: 1544-3566. DOI: 10.1145/3459010.
URL: https://doi.org/10.1145/3459010.

[4] Vinicius Espindola et al. “Source Matching and Rewriting for MLIR
Using String-Based Automata”. In: ACM Trans. Archit. Code Optim.

20.2 (Mar. 2023). ISSN: 1544-3566. DOI: 10 . 1145 / 3571283. URL:
https://doi.org/10.1145/3571283.

[5] Philip Ginsbach et al. “Automatic Matching of Legacy Code to
Heterogeneous APIs: An Idiomatic Approach”. In: Proceedings of

the Twenty-Third International Conference on Architectural Support

for Programming Languages and Operating Systems. ASPLOS ’18.
Williamsburg, VA, USA: Association for Computing Machinery, 2018,
pp. 139–153. ISBN: 9781450349116. DOI: 10.1145/3173162.3173182.
URL: https://doi.org/10.1145/3173162.3173182.

[6] Troels Henriksen et al. “Futhark: Purely Functional GPU-Programming
with Nested Parallelism and in-Place Array Updates”. In: Proceedings

of the 38th ACM SIGPLAN Conference on Programming Language

Design and Implementation. PLDI 2017. Barcelona, Spain: Association
for Computing Machinery, 2017, pp. 556–571. ISBN: 9781450349888.
DOI: 10.1145/3062341.3062354. URL: https://doi.org/10.1145/3062341.
3062354.

[7] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. “Playing by
the rules: rewriting as a practical optimisation technique in GHC”. In:
Haskell workshop. Vol. 1. 2001, pp. 203–233.

[8] Motohiro Kawahito et al. “Idiom Recognition Framework Using
Topological Embedding”. In: ACM Trans. Archit. Code Optim. 10.3
(Sept. 2013). ISSN: 1544-3566. DOI: 10.1145/2512431. URL: https:
//doi.org/10.1145/2512431.

[9] Thomas Koehler, Phil Trinder, and Michel Steuwer. “Sketch-Guided
Equality Saturation: Scaling Equality Saturation to Complex Optimiza-
tions in Languages with Bindings”. In: arXiv preprint arXiv:2111.13040

(2021).
[10] Zhitao Lin and Christophe Dubach. “From Functional to Imperative:

Combining Destination-Passing Style and Views”. In: Proceedings of the

8th ACM SIGPLAN International Workshop on Libraries, Languages

and Compilers for Array Programming. ARRAY 2022. San Diego,
CA, USA: Association for Computing Machinery, 2022, pp. 25–36.
ISBN: 9781450392693. DOI: 10.1145/3520306.3534502. URL: https:
//doi.org/10.1145/3520306.3534502.

[11] Chandrakana Nandi et al. “Synthesizing Structured CAD Models with
Equality Saturation and Inverse Transformations”. In: Proceedings

of the 41st ACM SIGPLAN Conference on Programming Language

Design and Implementation. PLDI 2020. London, UK: Association for
Computing Machinery, 2020, pp. 31–44. ISBN: 9781450376136. DOI:
10.1145/3385412.3386012. URL: https://doi.org/10.1145/3385412.
3386012.

[12] Chandrakana Nandi et al. “Synthesizing Structured CAD Models with
Equality Saturation and Inverse Transformations”. In: Proceedings

of the 41st ACM SIGPLAN Conference on Programming Language

Design and Implementation. PLDI 2020. London, UK: Association for
Computing Machinery, 2020, pp. 31–44. ISBN: 9781450376136. DOI:
10.1145/3385412.3386012. URL: https://doi.org/10.1145/3385412.
3386012.

[13] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Proceedings of the 33rd International

Conference on Neural Information Processing Systems. Red Hook, NY,
USA: Curran Associates Inc., 2019.

[14] Shlomit S. Pinter and Ron Y. Pinter. “Program Optimization and
Parallelization Using Idioms”. In: ACM Trans. Program. Lang. Syst.

16.3 (May 1994), pp. 305–327. ISSN: 0164-0925. DOI: 10.1145/177492.
177494. URL: https://doi.org/10.1145/177492.177494.

[15] Louis-Noël Pouchet and Tomofumi Yuki. PolyBench/C: the Polyhedral

Benchmark suite. Feb. 8, 2016. URL: http://web.cse.ohio-state.edu/
∼pouchet.2/software/polybench/.

[16] Jonathan Ragan-Kelley et al. “Halide: A Language and Compiler
for Optimizing Parallelism, Locality, and Recomputation in Image
Processing Pipelines”. In: Proceedings of the 34th ACM SIGPLAN

Conference on Programming Language Design and Implementation.
PLDI ’13. Seattle, Washington, USA: Association for Computing
Machinery, 2013, pp. 519–530. ISBN: 9781450320146. DOI: 10.1145/
2491956.2462176. URL: https://doi.org/10.1145/2491956.2462176.

[17] River Riddle et al. ‘pdl’ Dialect. May 10, 2023. URL: https://mlir.llvm.
org/docs/Dialects/PDLOps/.

[18] Amir Shaikhha et al. “Destination-Passing Style for Efficient Memory
Management”. In: Proceedings of the 6th ACM SIGPLAN International

Workshop on Functional High-Performance Computing. FHPC 2017.
Oxford, UK: Association for Computing Machinery, 2017, pp. 12–23.
ISBN: 9781450351812. DOI: 10.1145/3122948.3122949. URL: https:
//doi.org/10.1145/3122948.3122949.

[19] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. “LIFT: A
functional data-parallel IR for high-performance GPU code generation”.

281

https://doi.org/10.1145/567806.567807
https://doi.org/10.1145/567806.567807
https://doi.org/10.1145/3459010
https://doi.org/10.1145/3459010
https://doi.org/10.1145/3571283
https://doi.org/10.1145/3571283
https://doi.org/10.1145/3173162.3173182
https://doi.org/10.1145/3173162.3173182
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/2512431
https://doi.org/10.1145/2512431
https://doi.org/10.1145/2512431
https://doi.org/10.1145/3520306.3534502
https://doi.org/10.1145/3520306.3534502
https://doi.org/10.1145/3520306.3534502
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/177492.177494
https://doi.org/10.1145/177492.177494
https://doi.org/10.1145/177492.177494
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://mlir.llvm.org/docs/Dialects/PDLOps/
https://mlir.llvm.org/docs/Dialects/PDLOps/
https://doi.org/10.1145/3122948.3122949
https://doi.org/10.1145/3122948.3122949
https://doi.org/10.1145/3122948.3122949

In: 2017 IEEE/ACM International Symposium on Code Generation

and Optimization (CGO). 2017, pp. 74–85. DOI: 10.1109/CGO.2017.
7863730.

[20] Ross Tate et al. “Equality Saturation: A New Approach to Optimization”.
In: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages. POPL ’09. Savannah, GA,
USA: Association for Computing Machinery, 2009, pp. 264–276. ISBN:
9781605583792. DOI: 10.1145/1480881.1480915. URL: https://doi.org/
10.1145/1480881.1480915.

[21] Jonathan Van der Cruysse and Christophe Dubach. Latent Idiom

Recognition for a Minimalist Functional Array Language using Equality

Saturation. Zenodo, Sept. 2023. DOI: 10.5281/zenodo.8316752.
[22] Alexa VanHattum et al. “Vectorization for Digital Signal Processors via

Equality Saturation”. In: Proceedings of the 26th ACM International

Conference on Architectural Support for Programming Languages

and Operating Systems. ASPLOS ’21. Virtual, USA: Association for
Computing Machinery, 2021, pp. 874–886. ISBN: 9781450383172. DOI:
10.1145/3445814.3446707. URL: https://doi.org/10.1145/3445814.
3446707.

[23] Yisu Remy Wang et al. “SPORES: sum-product optimization via rela-
tional equality saturation for large scale linear algebra”. In: Proceedings

of the VLDB Endowment 13.12 (2020).
[24] Max Willsey et al. “egg: Fast and Extensible Equality Saturation”. In:

Proc. ACM Program. Lang. 5.POPL (Jan. 2021). DOI: 10.1145/3434304.
URL: https://doi.org/10.1145/3434304.

[25] Yichen Yang et al. “Equality Saturation for Tensor Graph Super-
optimization”. In: Proceedings of Machine Learning and Systems.
Ed. by A. Smola, A. Dimakis, and I. Stoica. Vol. 3. 2021, pp. 255–
268. URL: https : / / proceedings . mlsys . org / paper / 2021 / file /
65ded5353c5ee48d0b7d48c591b8f430-Paper.pdf.

282

https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.5281/zenodo.8316752
https://doi.org/10.1145/3445814.3446707
https://doi.org/10.1145/3445814.3446707
https://doi.org/10.1145/3445814.3446707
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://proceedings.mlsys.org/paper/2021/file/65ded5353c5ee48d0b7d48c591b8f430-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/65ded5353c5ee48d0b7d48c591b8f430-Paper.pdf

	Introduction
	Background: Equality Saturation
	Overview
	Minimalist Array IR and Rewrite Rules
	Target-Specific Rules and Extractor

	Minimalist Array IR and Rewrite Rules
	Syntax and Primitives
	Lambda Calculus with De Bruijn Indices
	Array operations
	Tuple Operations
	Named Function Calls

	Language Semantics as Rewrite Rules
	Language Semantics
	Rewrite Rules
	Substitution and Shift Operators
	Free Variables in Patterns

	Examples
	Map Fusion
	Constant Array Construction

	Use Cases: BLAS and PyTorch
	Scalar Arithmetic Rules
	Idiom Rules
	BLAS
	PyTorch

	Cost Model

	Evaluation
	Experimental Setup
	Idioms Recognized
	Idioms over Time
	Coverage
	Run Time Performance

	Related Work
	Conclusion
	Appendix
	Abstract
	Artifact Check-List (Meta-Information)
	Description
	How Delivered
	Hardware Dependencies
	Software Dependencies

	Installation
	Experiment Workflow
	Time-Limited Optimization
	Step-Limited Optimization
	Kernel Execution

	Evaluation and Expected Result
	Experiment Customization
	Notes

